Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel.
نویسندگان
چکیده
Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein.
منابع مشابه
Gating of a pH-Sensitive K2P Potassium Channel by an Electrostatic Effect of Basic Sensor Residues on the Selectivity Filter
K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-...
متن کاملAn evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane
Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...
متن کاملCollapse of Conductance Is Prevented by a Glutamate Residue Conserved in Voltage-Dependent K+ Channels
Voltage-dependent K(+) channel gating is influenced by the permeating ions. Extracellular K(+) determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K(+)] decreases, some K(+) channels open too briefly to allow the conduction of measurable current. Given that extracellular K(+) is normally low, we have studied if negatively c...
متن کاملEnhancement of Closed-State Inactivation by Neutralization of S4 Arginines in Domain IV of a Sodium Channel
voltage sensor of domain IV is specialized in energizing a cytoplasmic inactivation element (IFM), connecting the third and fourth homologous domains, into the inner mouth of the pore via a mechanism known as “ball and chain” fast inactivation. Further, it was shown that a neutralizing mutation at the outermost S4 arginine in domain IV, which is associated with the paramyotonia congenital disea...
متن کاملIdentification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
Chloride transport by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is inhibited by a broad range of substances that bind within a wide inner vestibule in the pore and physically occlude Cl(-) permeation. Binding of many of these so-called open-channel blockers involves electrostatic interactions with a positively charged lysine residue (Lys95) located in the pore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 2 شماره
صفحات -
تاریخ انتشار 2007